ON DUAL L¹-SPACES AND INJECTIVE BIDUAL BANACH SPACES

ΒY

RICHARD HAYDON

ABSTRACT

In a previous paper (Israel J. Math. **28** (1977), 313-324), it was shown that for a certain class of cardinals τ , $l^1(\tau)$ embeds in a Banach space X if and only if $L^1([0, 1]^{\dagger})$ embeds in X*. An extension (to a rather wider class of cardinals) of the basic lemma of that paper is here applied so as to yield an affirmative answer to a question posed by Rosenthal concerning dual \mathcal{L}_1 -spaces. It is shown that if Z^* is a dual Banach space, isomorphic to a complemented subspace of an L^1 -space, and κ is the density character of Z^* , then $l^1(\kappa)$ embeds in Z^* . A corollary of this result is that every injective bidual Banach space is isomorphic to $l^{\infty}(\kappa)$ for some κ . The second part of this article is devoted to an example, constructed using the continuum hypothesis, of a compact space S which carries a homogeneous measure of type ω_1 , but which is such that $l^1(\omega_1)$ does not embed in $\mathscr{C}(S)$. This shows that the main theorem of the already mentioned paper is not valid in the case $\tau = \omega_1$. The dual space $\mathscr{C}(S)^*$ is isometric to

$$(L^{1}[0,1]^{\omega_{1}}) \oplus \left(\sum_{\omega_{1}} {}^{\oplus}L^{1}[0,1] \oplus l^{1}(\omega_{1})\right)_{1}$$

and is a member of a new isomorphism class of dual L^1 -spaces.

1. Preliminaries

The notation and conventions used will be those of [3]. Cardinal numbers will be identified with the corresponding initial ordinals, but when the notation κ^{λ} is used it will be cardinal, rather than ordinal, exponentiation that is intended.

When μ is a measure, $\mathscr{L}^{1}(\mu)$ will denote the space of all μ -integrable functions, and $L^{1}(\mu)$ its quotient by the null functions. If f is in $\mathscr{L}^{1}(\mu)$, I write f^{\cdot} for the corresponding element of $L^{1}(\mu)$. I write **D** for the two-point space $\{0, 1\}$, and λ_{A} for the usual product measure on \mathbf{D}^{A} . If μ is any measure, the Banach space $L^{1}(\mu)$ is isometric to the l^{1} -direct sum

Received November 10, 1977

$$\left(\sum_{a\in A} \oplus L^{1}(\nu_{a})\right)_{1},$$

where each ν_a is a finite measure. Moreover, it may be assumed that each $L^1(\nu_a)$ is isometric to $L^1(\lambda_{\kappa(a)})$ for a suitable cardinal $\kappa(a)$.

A Banach space X is said to be injective (or to be a \mathscr{P}_{∞} -space) if, whenever Z is a Banach space, Y is a closed linear subspace of Z, and $T: Y \to X$ is a bounded linear operator, there exists a bounded linear operator $U: Z \to X$ which extends T. Most of the known results about injective Banach spaces are to be found in the paper [5] of Rosenthal; of the questions posed in that work, answers are given here to Conjecture 3 and 6 of §6.

The theory of injective Banach spaces is closely related to that of \mathcal{L}_{1} - and \mathcal{L}_{∞} -spaces (by page 201 of [4]). Let us recall in particular that every injective Banach space is an \mathcal{L}_{∞} -space, that Y is an \mathcal{L}_{1} -space if and only if Y* is injective, and that Z is an \mathcal{L}_{∞} -space if and only if Z* is an \mathcal{L}_{1} -space. Thus, in studying injective bidual Banach spaces, we are simply looking at the second duals of \mathcal{L}_{∞} -spaces. A vital tool is a lifting property possessed by dual \mathcal{L}_{1} -spaces, which appears as lemma 4 of [2], and which, for convenience, I record again here.

1.1 LEMMA. Let X and Y be Banach spaces and $J: X \to Y$ be a (linear homeomorphic) embedding. Let $Z \subseteq X^*$ be a closed linear subspace which is an \mathcal{L}_1 -space. Then there is a closed linear subspace W of Y* such that $J^* | W$ is a linear homeomorphism of W onto Z.

As in [3] a crucial role in this paper will be played by a combinatorial lemma due to Erdös and Rado. Recall that a family of sets $(E(\alpha))_{\alpha \in \Delta}$ is said to be quasidisjoint (with common intersection I) if $E(\alpha) \cap E(\beta)$ is the same set I whenever α and β are distinct elements of Δ . It will be convenient for us to say that a cardinal τ has the property (\ddagger) if $\kappa^{\omega} < \tau$ whenever κ is a cardinal and $\kappa < \tau$. The following result is theorem 1 of [1].

1.2 LEMMA. Let $(E(\alpha))_{\alpha \in \Gamma}$ be a family of countable sets, and suppose that $|\Gamma|$ is a regular cardinal with the property (\pm) . Then there is a subset Δ of Γ with $|\Delta| = |\Gamma|$ such that $(E(\alpha))_{\alpha \in \Delta}$ is quasidisjoint.

2. Injective bidual Banach spaces

In this paragraph, a refinement of proposition 2.3 of [3] is presented, which allows us to prove a conjecture of Rosenthal's about injected biduals. First let us settle some notation. When B is a subset of A, we shall write π_B for the projection $\mathbf{D}^A \to \mathbf{D}^B$. In [3] use was made of the conditional expectation map $\mathscr{C}_B: L^1(\lambda_A) \to L^1(\lambda_B)$; it will be convenient here to work with maps

$$\mathscr{U}_B$$
 and $\mathscr{V}_B: L^{\infty}(\lambda_A) \to L^{\infty}(\lambda_B)$

defined by putting

$$\mathcal{U}_B f' = u'$$
 and $\mathcal{V}_B f' = v'$,

where u and v are given (almost everywhere) by

$$u(z) = \operatorname{ess\,sup} \{ f(x, z) \colon x \in \mathbf{D}^{A \setminus B} \},\$$
$$v(z) = \operatorname{ess\,inf} \{ f(x, z) \colon x \in \mathbf{D}^{A \setminus B} \}.$$

We recall that every element of $L^{1}(\lambda_{A})$ "depends on only countably many coordinates", in the sense that, if $f \in L^{1}(\lambda_{A})$ there exist a countable subset E of A and $g \in L^{1}(\lambda_{E})$ such that $f = (g \circ \pi_{E})$. The following lemma expresses a by now familiar idea in what will be a convenient form.

2.1 LEMMA. Let B be a subset of A and $f_{\alpha} = (g_{\alpha} \circ \pi_{E(\alpha)})^{\cdot} (\alpha \in \Delta)$ be a bounded family of elements of $L^{\infty}(\lambda_{A})$. Suppose that $E(\alpha) \cap E(\beta) \subseteq B$ whenever α and β are distinct elements of Δ . Write $u_{\alpha} = \mathcal{U}_{B}f_{\alpha}^{\cdot}$, $v_{\alpha}^{\cdot} = \mathcal{V}_{B}f_{\alpha}^{\cdot}$, and suppose further that there exist real numbers r, and $\delta > 0$, such that the intersection

$$F_{M} = \bigcap_{\alpha \in M} \{ z \in \mathbf{D}^{B} : u_{\alpha}(z) > r + \delta, v_{\alpha}(z) < r \}$$

is non-null for every finite $M \subseteq \Delta$. Then the family $(f_{\alpha})_{\alpha \in \Delta}$ is equivalent for the L^{∞} -norm to the usual basis of $l^{1}(\Delta)$.

PROOF. It is enough, by proposition 4 of [6], to show that for every disjoint pair of finite subsets M_0 , M_1 of Δ the set

$$G = \bigcap_{\alpha \in M_0} \{ x \in \mathbf{D}^A : f_\alpha(x) > r + \delta \} \cap \bigcap_{\beta \in M_1} \{ x \in \mathbf{D}^A : f_\beta(x) < r \}$$

is non-null. Using Fubini's theorem and the fact that the sets $E(\alpha)\setminus B$ are mutually disjoint, we can estimate $\lambda_A(G)$ by

$$\lambda_{A}(G) \geq \int_{F_{M}} \left[\prod_{\alpha \in M_{0}} \lambda_{E(\alpha) \setminus B} \{ y \colon g_{\alpha}(y, z) > r + \delta \} \right]$$
$$\left[\prod_{\beta \in M_{1}} \lambda_{E(\beta) \setminus B} \{ y \colon g_{\beta}(y, z) < r \} \right] \lambda_{M}(dz).$$

Since the integrand is everywhere positive on the non-null set F_M (where $M = M_0 \cup M_1$), we see that $\lambda_A(G) > 0$.

2.2 PROPOSITION. Let $(\Omega, \mathcal{F}, \mu)$ be a probability space and τ be a cardinal which satisfies (\neq) and which is such that the cofinality $cf(\tau)$ is either ω or else does itself satisfy (\neq) . Let $(f_{\alpha})_{\alpha\in\Gamma}$ be a family of elements of $L^{\infty}(\Omega, \mathcal{F}, \mu)$ satisfying $|\Gamma| = \tau$, $||f_{\alpha}||_{L^{\infty}} \leq 1$ ($\alpha \in \Gamma$), and $||f_{\alpha} - f_{\beta}||_{L^{1}} \geq \varepsilon > 0$ ($\alpha, \beta \in \Gamma, \alpha \neq \beta$). Then there is a subset Δ of Γ with $|\Delta| = \tau$ such that $(f_{\alpha})_{\alpha\in\Delta}$ is equivalent for the L^{∞} -norm to the usual basis of $l^{1}(\Delta)$.

PROOF. For the case of τ a regular cardinal, this is proposition 2.3 of [3]. So we assume $cf(\tau) = \kappa < \tau$ and find disjoint subsets of Γ , $\Gamma(\xi)$ ($\xi \in \kappa$), in such a way that each $\tau(\xi) = |\Gamma(\xi)|$ is a regular cardinal, greater than κ and satisfying (\pm), while we have also

$$\tau(\xi) > \sup\{\tau(\eta) : \eta < \xi\} \quad \text{and}$$
$$\tau = \sup\{\tau(\xi) : \xi \in \kappa\}.$$

We may assume that the probability triple is in fact $(\Omega, \mathcal{F}, \mu) = (\mathbf{D}^A, \mathcal{B}(\mathbf{D}^A), \lambda_A)$, and that the functions f_{α} have the form $g_{\alpha} \circ \pi_{E(\alpha)}$ for suitable countable subsets $E(\alpha)$ of A and $g_{\alpha} \in L^{\infty}(\lambda_{E(\alpha)})$. Using the combinatorial lemma of Erdös and Rado and various straightforward reductions of a type made in [3] (based on the observation that each $\tau(\xi)$ is a regular cardinal greater than 2^{ω}), we may assume that the sets $\Gamma(\xi)$ were chosen so that the following hold:

(i) each family $(E(\alpha))_{\alpha \in \Gamma(\xi)}$ is quasidisjoint, with common intersection $I(\xi)$, say;

(ii) for each ξ there are functions u_{ξ}, v_{ξ} in $\mathscr{L}^{\infty}(\lambda_{I(\xi)})$ such that

$$\mathcal{U}_{I(\xi)}f_{\alpha}^{\cdot} = u_{\xi}^{\cdot}$$
 and
 $\mathcal{V}_{I(\xi)}f_{\alpha}^{\cdot} = v_{\xi}^{\cdot}$ for all $\alpha \in \Gamma(\xi)$

Now we certainly have $||u_{\xi} - v_{\xi}||_{L^1} \ge \varepsilon$ and $||u_{\xi} - v_{\xi}||_{L^{\infty}} \le 2$ so

$$\lambda_{I(\xi)}\{z: u_{\xi}(z) - v_{\xi}(z) \geq \varepsilon/2\} \geq \varepsilon/4.$$

If δ is any real with $0 < \delta < \varepsilon/2$ choose an integer $N > (\varepsilon/2 - \delta)^{-1}$. Then there exists an integer $M = M(\xi)$ with $|M(\xi)| \le N$, such that if we put r = M/N we have

$$\lambda_{I(\xi)}\{z: u_{\xi}(z) > r + \delta, v_{\xi}(z) < r\} \geq \varepsilon/8N.$$

We may suppose that the family of sets $(\Gamma(\xi))_{\xi \in \kappa}$ was so chosen that $M(\xi)$ is the same integer for all ξ .

We may now proceed inductively to make further refinements of the sets $\Gamma(\xi)$. For each ξ we know by hypothesis that

$$\Sigma(\xi) = \{ E(\alpha) \colon \alpha \in \Gamma(\eta), \eta < \xi \}$$

is a set of cardinality strictly less than $\tau(\xi)$. Since $\tau(\xi)$ is a regular cardinal satisfying (\neq) , we may assume that the sets $\Gamma(\xi)$ were chosen so that the intersection $E(\alpha) \cap \Sigma(\xi)$ is the same countable subset of $\Sigma(\xi)$ for all $\alpha \in \Gamma(\xi)$. The last refinement is to note that (discarding at most κ elements from each $\Gamma(\xi)$) we may suppose that $E(\alpha) \cap E(\beta) \subseteq I(\xi) \cap I(\eta)$ whenever $\alpha \in \Gamma(\xi)$, $\beta \in \Gamma(\eta)$ and $\xi \neq \eta$. We are now ready to consider separately the two cases to be dealt with.

(i) $cf(\tau) = \omega$

Put $B = \bigcup_{m \in \omega} I(m)$. Then certainly $E(\alpha) \cap E(\beta) \subseteq B$ whenever α, β are distinct elements of $\bigcup_{m \in \omega} \Gamma(m)$, and

$$\mathcal{U}_{B}f_{\alpha}^{\cdot} = (u_{m} \circ \pi_{I(m)})^{\cdot},$$
$$\mathcal{V}_{B}f_{\alpha}^{\cdot} = (v_{m} \circ \pi_{I(m)})^{\cdot}$$

whenever $\alpha \in \Gamma(m)$. We know that if

$$H_m = \{ w \in \mathbf{D}^B : u_m(\pi_{I(m)}w) > r + \delta \quad \text{and} \quad v_m(\pi_{I(M)}w) < r \}$$

we have $\lambda_B(H_m) \ge \varepsilon/8N$. Consequently there is an infinite subset σ of ω such that each intersection $\bigcap_{m \in M} H_m$, with M a finite subset of σ , is non-null. We put $\Delta = \bigcup_{m \in \sigma} \Gamma(m)$ and have the required result by Lemma 2.1.

(ii) $cf(\tau)$ satisfies (\pm)

Since $\operatorname{cf} \tau$ is regular we may assume that the family $(\Gamma(\xi))_{\xi \in \kappa}$ was chosen so that $(I(\xi))_{\xi \in \kappa}$ is quasidisjoint, with common intersection J, say. For each ξ we can choose a compact non-null subset K_{ξ} of $\mathbf{D}^{I(\xi)}$ such that $u_{\xi}(z) > r + \delta$, $v_{\xi}(z) < r$ for all $z \in K_{\xi}$. Making a last refinement, we may assume that $\pi_J[K_{\xi}]$ is the same compact subset of \mathbf{D}^J for all ξ . If we put $B = \bigcup_{\xi \in \kappa} I(\xi)$ and $\Delta = \bigcup_{\xi \in \kappa} \Gamma(\xi)$, Lemma 2.1 is again applicable.

For our desired application of the above result we shall have need of some further ideas from [5] which for convenience are presented formally as lemmas.

2.3 LEMMA. Let X be a subspace of an L^1 -space $(\sum_{a \in A} \oplus L^1(v_a))_1$, where all the measures v_a are finite. Let σ be the smallest cardinal of a subset B of A for which the natural map $P_B: X \to (\sum_{a \in B} \oplus L^1(v_a))_1$ is a homeomorphic embedding. Then X has a complemented subspace isomorphic to $l^1(\sigma)$, but no subspace isomorphic to $l^1(\tau)$ for an uncountable cardinal $\tau > \sigma$.

PROOF. If C is a subset of A with $|C| < \sigma$ then there exists $x \in X$ with ||x|| = 1 and $||P_{C}x|| < \frac{1}{4}$. So we can find a finite subset D of A, disjoint from C,

such that $||P_D x|| > \frac{3}{4}$. In this way we can construct inductively a family $(x_{\alpha})_{\alpha \in \sigma}$ of elements of ball X and a disjoint family $(D_{\alpha})_{\alpha \in \sigma}$ of subsets of A such that $||P_{D_{\alpha}} x_{\alpha}|| > \frac{3}{4}$ for all $\alpha \in \sigma$. That X has a complemented subspace isomorphic to $l^1(\sigma)$ now follows from lemma 1.1 of [5].

Now suppose that the family $(e_{\alpha})_{\alpha \in \tau}$ of elements of ball X is equivalent to the usual basis of $l^{1}(\tau)$ for some uncountable $\tau > \sigma$. For suitably chosen finite subsets D_{α} of B the family $(P_{D_{\alpha}}e_{\alpha})_{\alpha \in \tau}$ is still equivalent to the usual basis of $l^{1}(\tau)$. Now we can find an uncountable set Γ of indices α , such that D_{α} is the same finite set D, say, for all $\alpha \in \Gamma$. We deduce that the weakly compactly generated Banach space $\sum_{\alpha \in D} L^{1}(\nu_{\alpha})$ has a subspace isomorphic to $l^{1}(\Gamma)$, which is false by remark 2 of §1 of [5].

2.4 LEMMA. If κ is a cardinal and X is a Banach space with a subspace isomorphic to $l^{1}(\kappa)$, then X* has a subspace isomorphic to $l^{1}(2^{\kappa})$.

PROOF. Let $I: l^1(\kappa) \to X$ be an embedding with transpose $I^*: X^* \to l^{\infty}(\kappa)$. By 1.1 it will be enough to prove that $l^1(2^{\kappa})$ embeds in $l^{\infty}(\kappa)$. Since the compact space $\{0, 1\}^{2^{\kappa}} = S$ has a dense subset of cardinality κ we can see that the space of continuous functions $\mathscr{C}(S)$ embeds in $l^{\infty}(\kappa)$. On the other hand, $l^1(2^{\kappa})$ embeds in $\mathscr{C}(S)$ via the coordinate functions.

2.5 THEOREM. Let Z be an \mathscr{L}_{∞} -space. If δ is the density character of Z* then Z* has a complemented subspace isomorphic to $l^{1}(\delta)$.

PROOF. Let S denote the unit ball of Z^* under the weak* topology, and I the natural embedding of Z in $\mathscr{C}(S)$. Then by 1.1 there is an embedding $J: Z^* \to \mathscr{C}(S)^*$ such that I^*J is the identity on Z^* . If $(\nu_a)_{a \in A}$ is a maximal family of mutually singular measures on S we can identify $\mathscr{C}(S)^*$ with

$$\left(\sum_{a\in A} \oplus L^{1}(\nu_{a})\right)_{1}.$$

Let B be a subset of A of minimal cardinality such that P_B is an isomorphism on Z^* . If $|B| = \delta$ Lemma 2.3 gives the desired result. Otherwise, let $\mu = |B|^* \leq \delta$. We shall obtain a contradiction to the second part of 2.3 by showing that Z^* has a subspace isomorphic to $l^1(\mu)$.

Firstly note that since μ is a regular cardinal it must be that one of the spaces $L^{1}(\nu_{a})$ ($a \in B$) has density character μ . Since ν_{a} is a measure on $S = \text{ball } Z^{*}$, we have obvious operators

$$Z \to \mathscr{C}(S) \to L^{\infty}(\nu_a) \to L^1(\nu_a).$$

R. HAYDON

As in the proof of 2.6 of [3], we can conclude that the density character of the image of Z in $L^{1}(\nu_{a})$ is μ , and hence that there exists a family $(z_{\gamma})_{\gamma \in \mu}$ of elements of Z with

$$||z_{\gamma}||_{z} = 1$$
 and

$$|| z_{\beta} - z_{\gamma} ||_{L^{1}(\nu_{a})} \ge \varepsilon > 0 \qquad (\beta \neq \gamma).$$

If the regular cardinal μ satisfies the condition (\pm) we are finished since, by 2.3 of [3], Z has a subspace isomorphic to $l^{1}(\mu)$. Hence by 2.4 Z* has a subspace isomorphic to $l^{1}(2^{\mu})$.

We now consider the case where μ does not satisfy (\neq). Let τ be the smallest cardinal such that $\tau < \mu$, $\tau^{\omega} \ge \mu$. Then certainly τ satisfies (\neq) since if $\kappa^{\omega} \ge \tau$ we have

$$\kappa^{\omega} = (\kappa^{\omega})^{\omega} \ge \tau^{\omega} \ge \mu,$$

so that $\kappa \ge \tau$, by choice of τ . It must also be the case that $cf(\tau) = \omega$ since if $cf(\tau) > \omega$ we have

$$\tau^{\omega} = \sup\{\kappa^{\omega} \colon \kappa < \tau\}.$$

Thus we can apply Proposition 2.2 and deduce that Z has a subspace isomorphic to $l^1(\tau)$. So Z* has a subspace isomorphic to $l^1(2^{\tau})$ and since $2^{\tau} \ge \tau^{\omega} \ge \mu$ the proof is finished.

2.6 COROLLARY. Let X be an injective bidual Banach space. Then X is isomorphic to $l^{\infty}(\Gamma)$ for a suitable set Γ .

PROOF. As remarked in [5], this is an easy deduction from 2.5. If $X = Z^{**}$ is injective and $\delta = \text{dens } Z^*$, then certainly X embeds as a subspace (necessarily complemented) of $l^{\infty}(\delta)$. On the other hand, we have just seen that Z^* has a complemented subspace isomorphic to $l^1(\delta)$, so that X has a complemented subspace isomorphic to $l^{\infty}(\delta)$. Now Pelczynski's decomposition method (or "accordion lemma"), proposition 1.4 of [5], gives the desired result.

3. An example

It was shown in [3] that, for a regular cardinal τ which satisfies (\neq), the following assertions about the Banach space X are equivalent:

(ai) X has a subspace isomorphic to $l^{1}(\tau)$;

(aii) X^* has a subspace isomorphic to $L^1(\lambda_{\tau})$.

A closely related result was also given, that for a compact Hausdorff space T the following are equivalent (subject to the same restrictions on τ):

- (bi) T carries a homogeneous measure of type τ ;
- (bii) there exists a continuous surjection from T onto $[0,1]^{T}$.

Subject to the generalized continuum hypothesis, a cardinal τ satisfies (\pm) if and only if it is not of the form $\tau = \kappa^+$ where $cf(\kappa) = \omega$. The most obvious example, therefore, of a cardinal not satisfying (\pm) is ω_1 , and I give in this paragraph an example to show that assuming the continuum hypothesis, neither of the above equivalences is valid for $\tau = \omega_1$. It also settles negatively conjecture 6 of [5] by showing that there is a dual L^1 -space that is not isomorphic to an l^1 -direct sum of spaces of the type

$$L_{\kappa} = \left(\sum_{2^{\kappa}} \oplus L^{1}(\lambda_{\kappa})\right)_{1}.$$

I have not been able to construct such an example without the use of CH.

3.1 THEOREM. Subject to the continuum hypothesis, there exist a compact space S and a measure μ on S such that the following hold:

(i) $|S| = \omega_1$;

(ii) μ is homogeneous of type ω_1 ;

(iii) every compact μ -null set is metrizable;

(iv) a nonzero measure ν on S is homogeneous of type ω_1 if and only if ν is absolutely continuous with respect to μ ;

(v) $\mathscr{C}(S)^*$ is isometric to the l^1 -direct sum

$$(L^{1}([0,1]^{\omega_{1}})) \oplus \left(\left(\sum_{\omega_{1}} \oplus L^{1}[0,1] \right) \oplus l^{1}(\omega_{1}) \right)_{1};$$

(vi) $\mathscr{C}(S)$ does not contain a subspace isomorphic to $l^1(\omega_1)$.

PROOF. The basic process in the construction is the following. Suppose that T is a compact space, that μ is a probability measure on T, and that $\mathcal{X} = (K_n)_{n \in \omega}$ is a sequence of disjoint closed subsets of T satisfying

$$K_n = \operatorname{supp}(\mu \mid K_n) \qquad (n \in \omega),$$

 $\mu \Big(\bigcup_{n \in \omega} K_n \Big) = 1.$

Denote by T^{π} the subset

$$(T \times \{0\}) \cup \bigcup_{n \in \omega} (K_n \times \{2^{-n}\})$$

of $T \times \mathbf{R}$. Then $T^{\mathcal{X}}$ is compact and the map $p: T^{\mathcal{X}} \to T$; $(t, x) \mapsto t$ is continuous. We denote by $\mu^{\mathcal{X}}$ the measure on $T^{\mathcal{X}}$ obtained by splitting μ in half, that is

$$\mu^{\mathscr{H}} = \frac{1}{2} \sum_{n \in \omega} (\mu \mid K_n) \otimes (\delta(0) + \delta(2^{-n})).$$

Certainly the image $\tilde{p}(\mu^{\mathcal{H}})$ of $\mu^{\mathcal{H}}$ under p is μ and, if $T = \operatorname{supp} \mu$, then also $T^{\mathcal{H}} = \operatorname{supp} \mu^{\mathcal{H}}$.

The space S that we shall construct will be the inverse limit of a system

$$(S_{\alpha}, p_{\alpha\beta})_{\omega \leq \alpha \leq \beta < \omega_1}$$

of compact metrizable spaces indexed by the ordinals α with $\omega \leq \alpha < \omega_1$. We shall also define probability measures μ_{α} on the spaces S_{α} ; these will satisfy

$$\mu_{\alpha} = \tilde{p}_{\alpha\beta}\mu_{\beta} \qquad (\alpha < \beta)$$

and μ will be defined to be the inverse limit measure on S. As usual, we shall write p_{α} for the canonical map $S \rightarrow S_{\alpha}$.

We start by defining $S_{\omega} = \mathbf{D}^{\omega}$ and $\mu_{\omega} = \lambda_{\omega}$, and fix an enumeration $(N_{\xi}^{\omega})_{\xi \in \omega_1}$ of the compact μ_{ω} -null subsets of S_{ω} . Suppose now that spaces S_{β} , continuous surjections $p_{\alpha\beta}$, measures μ_{β} , and enumerations $(N_{\xi}^{\beta})_{\xi \in \omega_1}$ of the compact μ_{β} -null sets have been defined for all α, β with $\omega \leq \alpha \leq \beta < \delta$. In the case where δ is a limit ordinal we just take S_{δ} and μ_{δ} to be inverse limits, $p_{\alpha\delta}$ to be the naturally determined map and choose an enumeration $(N_{\xi}^{\delta})_{\xi \in \omega_1}$ of the compact μ_{δ} -null sets.

If $\delta = \gamma + 1$, we note that the subset $E = \bigcup_{\alpha, \xi \leq \gamma} p_{\alpha\gamma}^{-1}[N_{\xi}^{\alpha}]$ of S_{γ} is μ_{γ} -null, and choose a sequence $\mathscr{H} = \mathscr{H}(\gamma) = (K_{n}^{\gamma})_{n \in \omega}$ of disjoint compact subsets of $S_{\gamma} \setminus E$ satisfying $K_{n}^{\gamma} = \operatorname{supp}(\mu_{\gamma} \mid K_{n}^{\gamma})$,

$$\mu_{\gamma}\left(\bigcup_{n\in\omega}K_{n}^{\gamma}\right)=1.$$

We take

$$S_{\gamma+1} = S_{\gamma}^{\mathfrak{X}},$$
$$\mu_{\gamma+1} = \mu_{\gamma}^{\mathfrak{X}},$$
$$p_{\gamma,\gamma+1} = p,$$

as in the basic process described above. We also define a map $r_{\gamma}: S_{\gamma+1} \rightarrow \{0, 1\}$ by

$$r_{\gamma}(s) = \begin{cases} 0 & \text{if } s \in S_{\gamma} \times \{0\}, \\ 1 & \text{otherwise.} \end{cases}$$

We may now turn our attention to proofs of the assertions (i) to (vi). (i) We note that for each $z \in S_{\omega}$, $\{z\} = N_{\alpha(z)}^{\omega}$ for a suitable $\alpha(z) < \omega_1$. Hence, by the construction, $p_{\alpha(z),\beta}$ is injective on $p_{\omega,\beta}^{-1}(z)$ whenever $\beta \ge \alpha(z)$, and so $p_{\alpha(z)}$ is injective on the subset $p_{\omega}^{-1}(z)$ of S. Since $S_{\alpha(z)}$ is a compact metrizable space,

 $|S_{\alpha(z)}| \leq \omega_1$ and so $|p_{\omega}^{-1}(z)| \leq \omega_1$. We deduce that $|S| = \omega_1$ from the equality

$$S=\bigcup_{z\in S_{\omega}}p_{\omega}^{-1}(z).$$

(ii) We can define a map $\rho: S \to \mathbf{D}^{\omega_1}$ by

$$(\rho s)_n = (p_\omega s)_n \qquad (n < \omega),$$

$$(\rho s)_{\gamma} = r_{\gamma}(p_{\gamma+1}s) \qquad (\omega \le \gamma < \omega_1)$$

Then ρ is Baire measurable and induces an isometry of $L^{1}(\mu)$ onto $L^{1}(\lambda_{\omega_{1}})$. Hence μ is homogeneous of type ω_{1} .

(iii) Let F be a compact μ -null subset of S. Then there exists $\alpha < \omega_1$ such that $p_{\alpha}[F]$ is μ_{α} -null. Hence $p_{\alpha}[F] = N_{\xi}^{\alpha}$ for some $\xi < \omega_1$. If $\gamma = \max{\{\alpha, \xi\}}$ then $p_{\gamma}|F$ is injective and F is therefore metrizable.

(iv) If ν is a nonzero measure on S which is singular with respect to μ , there is a compact subset F of S with $\mu(F) = 0$, $\nu(F) \neq 0$. By (iii), F is metrizable. Since a compact metrizable space cannot carry a measure of type ω_1 , ν is not homogeneous of type ω_1 .

(v) Let $(\nu_a)_{a \in A}$ be a maximal family of nonzero atomless measures on S, which are mutually singular, and singular with respect to μ . Then $\mathscr{C}(S)^*$ is isometric to

$$\left(L^{1}(\mu)\bigoplus\sum_{a\in A} {}^{\oplus}L^{1}(\nu_{a})\bigoplus l^{1}(\omega_{1})\right)_{1}.$$

It will be enough to prove that $|A| = \omega_1$, since $L^1(\mu)$ is isometric to $L^1(\lambda_{\omega_1})$ (or, equivalently, to $L^1([0,1]^{\omega_1})$), and each ν_a is of type ω (so that $L^1(\nu_a)$ is isometric to $L^1[0,1]$). I shall show, in fact, that there are only ω_1 measures of type ω on S. If ν is any such measure, ν is carried by some μ -null \mathcal{X}_{σ} subset F of S. There is an ordinal $\alpha = \alpha(\nu) < \omega_1$ with the property that p_{α} is injective on $p_{\alpha}^{-1}p_{\alpha}[F] = F$. Consequently, if ν' is a measure on S and $\tilde{p}_{\alpha}\nu' = \tilde{p}_{\alpha}\nu$ we have $\nu' = \nu$. That is to say, the map $\nu \to (\alpha(\nu), p_{\alpha(\nu)}(\nu))$, which takes the set of measures of type ω on S into

$$\omega_1 \times \left(\bigcup_{\alpha < \omega_1} \mathscr{C}(S_{\alpha})^*\right)$$

is injective.

(vi) By (v) and Lemma 2.3, $\mathscr{C}(S)^*$ does not have a subspace isomorphic to $l^1(2^{\omega_1})$. Hence by Lemma 1.1, $\mathscr{C}(S)$ does not have a subspace isomorphic to $l^1(\omega_1)$.

R. HAYDON

3.2 REMARK. The construction given in 3.1 shows clearly the way in which Proposition 2.2 (or proposition 2.3 of [3]) fails in the case $\tau = \omega_1$. We choose continuous functions f_{α} on S which are close approximations in $L^1(\mu)$ norm to the functions r_{α} . There is no uncountable set of indices for which the family $(f_{\alpha})_{\alpha \in \Delta}$ is equivalent to the usual basis of $l^1(\Delta)$.

ACKNOWLEDGEMENT

This paper contains research carried out while the author was visiting the Equipe d'analyse, Université Paris VI during March 1977.

REFERENCES

1. P. Erdös and R. Rado, Intersection theorems for systems of sets, J. London Math. Soc. 35 (1960), 85-90.

2. J. Hagler and C. Stegall, On Banach spaces whose duals contain complemented subspaces isomorphic to $\mathscr{C}[0, 1]^*$, J. Functional Analysis 13 (1973), 233-251.

3. R. Haydon, On Banach spaces which contain $l^{1}(\tau)$ and types of measures on compact spaces, Israel J. Math. **28** (1977), 313-324.

4. J. Lindenstrauss and L. Tzafriri, Classical Banach Spaces, Springer-Verlag, Berlin-Heidelberg-New York, 1973.

5. H. P. Rosenthal, On injective Banach spaces and the spaces $L^{\infty}(\mu)$ for finite measures μ , Acta Math. 123 (1970), 205–248.

6. H. P. Rosenthal, A characterization of Banach spaces containing l¹, Proc. Nat. Acad. Sci. U.S.A. 71 (1974), 2411–2413.

BRASENOSE COLLEGE OXFORD, ENGLAND