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ON D U A L  L1-SPACES A N D  INJECTIVE BIDUAL 
B A N A C H  SPACES 

BY 

R I C H A R D  H A Y D O N  

ABSTRACT 

In a previous paper  (Israel J. Math. 28 (1977), 313-324), it was shown that for a 
certain class of cardinals r, l l ( r )  embeds  in a Banach space X if and only if 
L 1([0, 1]') embeds  in X*.  An  extension (to a rather wider class of cardinals) of 
the basic lemma of that paper is here  applied so as to yield an affirmative answer 
to a question posed by Rosenthal  concerning dual &el-spaces. It is shown that if 
Z *  is a dual Banacb space, isomorphic to a complemented  subspace of an 
Ll-space,  and r is the density character  of Z* ,  then ll(g) embeds  in Z* .  A 
corollary of this result is that every injective bidual Banach space is isomorphic 
to l~(K) for some r.  The second part of this article is devoted to an example,  
constructed using the cont inuum hypothesis,  of a compact  space S which carries 
a homogeneous  measure  of type co~, but which is such that l '(wl) does not 
embed in ~(S) .  This shows that the main theorem of the already ment ioned 
paper is not valid in the case r = COl. The  dual space ~ ($ )*  is isometric to 

(L '[O, 1]")(~ ( ~  ~L '[O, 1](~ I'(OOl)) , 

and is a m ember  of a new isomorphism class of dual L m-spaces. 

1. Preliminaries 

The notation and conventions used will be those of [3]. Cardinal numbers will 

be identified with the corresponding initial ordinals, but when the notation K ̂  is 

used it will be cardinal, rather than ordinal, exponentiation that is intended. 

When /.t is a measure, ~l( /x)  will denote the space of all /~-integrable 

functions, and L l(/x) its quotient by the null functions. If f is in ~1(/.~), I write f" 

for the corresponding element of L m(/x). I write D for the two-point space {0, 1}, 

and AA for the usual product measure on D "~. If/.t is any measure, the Banach 

space Ll(/x) is isometric to the P-direct sum 
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where each va is a finite measure. Moreover,  it may be assumed that each L~(vo) 

is isometric to L~(A~r for a suitable cardinal u(a) .  

A Banach space X is said to be injective (or to be a ~| if, whenever Z 

is a Banach space, Y is a closed linear subspace of Z, and T: Y- -~X  is a 

bounded linear operator,  there exists a bounded linear operator  U: Z - - , X  

which extends T. Most of the known results about injective Banach spaces are to 

be found in the paper [5] of Rosenthal;  of the questions posed in that work, 

answers are given here to Conjecture 3 and 6 of w 

The theory of injective Banach spaces is closely related to that of ~1- and 

~| (by page 201 of [4]). Let us recall in particular that every injective 

Banach space is an ~| that Y is an ~ - s p a c e  if and only if Y* is injective, 

and that Z is an ~=-space if and only if Z*  is an ~l-space. Thus, in studying 

injective bidual Banach spaces, we are simply looking at the second duals of 

~=-spaces. A vital tool is a lifting property possessed by dual ~ - spaces ,  which 

appears as lemma 4 of [2], and which, for convenience, I record again here. 

1.1 LEMMA. Let X and Y be Banach spaces and J: X---~ Y be a (linear 

homeomorphic ) embedding. Let Z C_ X* be a closed linear subspace which is an 

~g~-space. Then there is a closed linear subspace W of Y* such that J*l W is a 

linear homeomorphism of W onto Z. 

As in [3] a crucial role in this paper will be played by a combinatorial lemma 

due to Erd6s and Rado. Recall that a family of sets (E(a)),~a is said to be 

quasidisjoint (with common intersection I)  if E(ct)N E(/3) is the same set I 

whenever a and/3 are distinct elements of A. It will be convenient for us to say 

that a cardinal z has the property ( 4: ) if K" < z whenever K is a cardinal and 

K < z. The following result is theorem 1 of [1]. 

1.2 LEMMA. Let (E(a  ) )~r  be a family of countable sets, and suppose that I FI 

is a regular cardinal with the property ( 4: ). Then there is a subset A of F with 

PAl = I r l  such that (E (a ) )~a  is quasidisjoint. 

2. Injective bidual Banach spaces 

In this paragraph, a refinement of proposition 2.3 of [3] is presented, which 

allows us to prove a conjecture of Rosenthal 's  about injected biduals. First let us 

settle some notation. When B is a subset of A, we shall write ~'8 for the 

projection D A --~ D s. In [3] use was made of the conditional expectation map 

~B: L'(AA)--->L~(AB); it will be convenient here to work with maps 
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defined by putting 

~ and ~ L| 

q/nf '=  u" and ~Bf "= v', 

where u and v are given (almost everywhere) by 

u(z)  = ess sup{f(x, z): x ~ DA~s}, 

v(z)  = ess inf {f(x, z): x E DA~"}. 

We recall that every element of L a(Aa) "depends on only countably many 

coordinates", in the sense that, if f E L'(Aa) there exist a countable subset E of 

A and g ' E  L'(AE) such that f ' =  (g o ~rE)'. The following lemma expresses a by 

now familiar idea in what will be a convenient form. 

2.1 LEMMA. Let B be a subset of A and f'~ = (g~ o lrz(~))" (a E A) be a bounded 

family of elements of L | ). Suppose that E (a ) N E (fl ) C B whenever a and 

are distinct elements of A. Write u'~ = ~ v'~ = ~VBf'~, and suppose further that 

there exist real numbers r, and 6 > O, such that the intersection 

FM = n { z E D S : u , ( z ) > r + 6 ,  v~(z) <r} 
aElt4 

is non-null for every finite M C h. Then the family (f~ )~a is equivalent for the 
L| to the usual basis of l '(h). 

PROOF. It is enough, by proposition 4 of [6], to show that for every disjoint 

pair of finite subsets M0, M, of h the set 

G= n ( x ~ D A : f , ( x ) > r + 6 }  n n { xEDa: fo (x )  <r} 
aEMo OE]~I 

is non-null. Using Fubini's theorem and the fact that the sets E(a)IB are 

mutually disjoint, we can estimate AA(G) by 

g,(y, z)< 

Since the integrand is everywhere positive on the non-null set F~ (where 

M = Mo U M,), we see that )tA (G) > O. 
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2.2 PROPOSITION. Let (fL ~T,/x) be a probability space and �9 be a cardinal 

which satisfies ( 4= ) and which is such that the cofinality cf(T) is either to or else 

does itself satisfy (4=). Let (f'~)~r be a family of elements of L| ~:, ~ )  

satisfying IF[ = z, 11 f~ IlL * ~ 1 (a ~ F), and [1 f~ - f~ IlL' --> e > 0 (a,/3 E F, ot # /3) .  

Then there is a subset A of F with [ A [ = z such that (f~),~a is equivalent for the 

L| to the usual basis of II(A). 

PROOF. For the case of r a regular cardinal, this is proposition 2.3 of [3]. So 

we assume cf(z)  = K < r and find disjoint subsets of F, F(~) (~ ~ K), in such a 

way that each r(~) = [F(~)[ is a regular cardinal, greater than K and satisfying 

(4:) ,  while we have also 

r(~) > s u p { r ( r l ) : 7  <~}  and 

z = sup{~'(~):~ E K}. 

We may assume that the probability triple is in fact ([~, ~T,/z ) = (D A, ~ (D A ), ha ), 

and that the functions f~ have the form g~ o ~rz(~) for suitable countable subsets 

E ( a )  of A and g~,~ L| Using the combinatorial lemma of Erd6s and 

Rado and various straightforward reductions of a type made in [3] (based on the 

observation that each ~'(~) is a regular cardinal greater than 2~), we may assume 

that the sets F(~) were chosen so that the following hold: 

(i) each family (E(a)).~r~e)is quasidisjoint, with common intersection I(~), 

say; 

(ii) for each ~ there are functions u,, v, in ~| such that 

a//1r = u ~ and 

o//- )f~, = v~ for all a E F(~). 

Now we certainly have [[u~-v'e[lL, >- _ e and [[u~-vdlL-_-< 2 so 

X,e){z : ae(z ) -  v~(z ) >= e/2} > e/4. 

If ~ is any real with 0 < ~ < e/2 choose an integer N > (e/2 - 6) -1. Then there 

exists an integer M = M(s c) with [M(~r _-< N, such that if we put r = M / N  we 

have 

hm){z: u , (z)  > r + 6, ve(z) < r } _  > - e/8N. 

We may suppose that the family of sets (F(~)),~. was so chosen that M(~) is the 

same integer for all ~. 

We may now proceed inductively to make further refinements of the sets F(~). 

For each ,~ we know by hypothesis that 
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= r ( n ) ,  < 

is a set of cardinality strictly less than z(sc). Since r(~:) is a regular cardinal 

satisfying ( 4 ) ,  we may assume that the sets F(s ~) were chosen so that the 

intersection E(c~) n X(s ~) is the same countable subset of X(~:) for all a ~ F(sr 

The last refinement is to note that (discarding at most K elements from each 

r ( r  we may suppose that E ( a ) n E ( f l ) C I ( r  whenever a EF(~:), 

/3 E F(-q ) and ~:~ 77. We are now ready to consider separately the two cases to be 

dealt with. 

(i) cf(~*)= a, 

Put B = U , , ~ j ( m ) .  Then certainly E ( a ) O E ( ~ ) C B  whenever a,/3 are 

distinct elements of Um~,F(m) ,  and 

= (urn o 

~'Bf:, = (vm o "n',(,,))" 

whenever a ~ F(m). We know that if 

H . , = { w ~ D B : u m ( ~ r , m ) w ) > r + 8  and vm(Tr,(M)w)<r} 

we have AB (Hm) >= e/8N. Consequently there is an infinite subset o- of ~o such 

that each intersection n,.eMHm, with M a finite subset of or, is non-null. We put 

h = U m ~ F ( m )  and have the required result by Lemma 2.1. 

(ii) cf(~-) satisfies ( 4 ) 

Since efT) is regular we may assume that the family (F(~:))~. was chosen so 

that (I(~:))~. is quasidisjoint, with common intersection J, say. For each ~: we 

can choose a compact non-null subset K~ of D "~) such that u e ( z ) > r + 8 ,  

v~(z) < r for all z ~ Ke. Making a last refinement, we may assume that zr:[K~] is 

the same compact subset of D: for all ~:. If we put B = U~KI(~:)  and 

A = U~KF(~:),  Lemma 2.1 is again applicable. 

For our desired application of the above result we shall have need of some 

further ideas from [5] which for convenience are presented formally as lemmas. 

2.3 LEMMA. Let X be a subspace of an L ~-space ( ~ A $ L  ~(v~))~, where all the 

measures ,~ are finite. Let or be the smallest cardinal of a subset B of A for which 

the natural map PB: X - +  (E~B~L ~( v,))~ is a homeomorphic embedding. Then X 

has a complemented subspace isomorphic to l~(er), but no subspace isomorphic to 

l ' (r)  for an uncountable cardinal r > er. 

PROOF. If C is a subset of A with I C l < o -  then there exists x ~ X  with 

II x II = 1 and II P~x II < ~. So we can find a finite subset D of A, disjoint from C, 
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such that 11 Pox [I > In this way we can construct inductively a family ( x ~ ) ~  of 

elements of ball X and a disjoint family (D~)a~,, of subsets of A such that 

II eDox  II > for all a E or. That X has a complemented subspace isomorphic to 

ll(cr) now follows from lemma 1.1 of [5]. 

Now suppose that the family (e~)~ ,  of elements of ball X is equivalent to the 

usual basis of 110") for some uncountable ~- > o,. For suitably chosen finite subsets 

Da of B the family (Po~e~)~, is still equivalent to the usual basis of U(z). Now 

we can find an uncountable set F of indices a, such that D ,  is the same finite set 

D, say, for all a ~ F. We deduce that the weakly compactly generated Banach 

space Xa~oL t(v,) has a subspace isomorphic to P(F), which is false by remark 2 

of w of [5]. 

2.4 LEMMA. If K is a cardinal and X is a Banach space with a subspace 
isomorphic to l~(K ), then X* has a subspace isomorphic to lt(2"). 

PROOF. Let I:  II(K)---~X be an embedding with transpose I*: X*--+l| 
By 1.1 it will be enough to prove that l~(2 ") embeds in l| Since the compact 

space {0, 1} 2" = S has a dense subset of cardinality K we can see that the space of 

continuous functions ~ (S) embeds in l| On the other hand, l~(2 ") embeds in 

(S) via the coordinate functions. 

2.5 THEOREM. Let Z be an ~f~-space. If ~ is the density character of Z*  then 

Z* has a complemented subspace isomorphic to U(8 ). 

PROOF. Let S denote the unit ball of Z*  under the weak* topology, and I the 

natural embedding of Z in ~(S) .  Then by 1.1 there is an embedding 

J :  Z*--~ cr such that I*J is the identity on Z*.  If (V~)~A is a maximal 

family of mutually singular measures on S we can identify ~ (S)*  with 

Let B be a subset of A of minimal cardinality such that PB is an isomorphism on 

Z*.  If I B I = ~5 Lemma 2.3 gives the desired result. Otherwise, let V, = I B I § =< & 

We shall obtain a contradiction to the second part of 2.3 by showing that Z*  has 

a subspace isomorphic to l~(/z). 

Firstly note that since/~ is a regular cardinal it must be that one of the spaces 

L'(va) (a E B) has density character ~. Since vo is a measure on S = ball Z*,  we 

have obvious operators 

Z -~ %~ (S) -~  L| L'(v~). 
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As in the proof of 2.6 of [3], we can conclude that the density character of the 

image of Z in Ll(~,a) is /~, and hence that there exists a family ( z ~ ) ~  of 

elements of Z with 

II llz = l and 

IIz -z llLl,vo,>-  > 0  r). 

If the regular cardinal/z satisfies the condition ( 4: ) we are finished since, by 2.3 

of [3], Z has a subspace isomorphic to l~(/x). Hence by 2.4 Z* has a subspace 

isomorphic to U(2~). 

We now consider the case where/z does not satisfy ( 4: ). Let ~" be the smallest 

cardinal such that r </~, r "  =>/z. Then certainly ~- satisfies ( 4: ) since if K" => Z 

we have 

K" = ( K ' ) ' _ - >  r ' _ _ > / ~ ,  

so that K => r, by choice of z. It must also be the case that c f (z )=  to since if 

cf(r)  > to we have 

~'" = s u p  {,~ ~ : K < ~'}. 

Thus we can apply Proposition 2.2 and deduce that Z has a subspace isomorphic 

to ll(r). So Z* has a subspace isomorphic to l~(2 T) and since 2" => r"  _-->/z the 

proof is finished. 

2.6 COROLLARY. Let X be an injective bidual Banach space. Then X is 

isomorphic to I~(F) for a suitable set F. 

PROOf. As remarked in [5], this is an easy deduction from 2.5. If X = Z** is 

injective and ~ = dens Z*,  then certainly X embeds as a subspace (necessarily 

complemented) of 1| On the other hand, we have just seen that Z* has a 

complemented subspace isomorphic to 1~(8), so that X has a complemented 

subspace isomorphic to l ' (~).  Now Pelczynski's decomposition method (or 

"accordion lemma"), proposition 1.4 of [5], gives the desired result. 

3. An example 

It was shown in [3] that, for a regular cardinal ~- which satisfies (:~), the 

following assertions about the Banach space X are equivalent: 

(ai) X has a subspace isomorphic to ll(z); 

(aii) X* has a subspace isomorphic to LI(A,). 

A closely related result was also given, that for a compact Hausdortt space T the 

following are equivalent (subject to the same restrictions on ~'): 
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(bi) T carries a homogeneous measure of type r ;  

(bii) there exists a continuous surjection from T onto [0, 1] ". 

Subject to the generalized continuum hypothesis, a cardinal r satisfies ( 4: ) if 

and only if it is not of the form r = K § where c f (K)=  to. The most obvious 

example, therefore, of a cardinal not satisfying (4 : )  is o9~, and I give in this 

paragraph an example to show that assuming the continuum hypothesis, neither 

of the above equivalences is valid for r = o91. It also settles negatively conjecture 

6 of [5] by showing that there is a dual Ll-space that is not isomorphic to an 

P-direct sum of spaces of the type 

I have not been able to construct such an example without the use of CH. 

3.1 THEOREM. Subject to the cont inuum hypothesis, there exist a compact  

space S and a measure tx on S such that the following hold: 

(i) [SI= oJl; 

(ii) /z is homogeneous o f  type o91; 

(iii) every compact  Ix-null set is metrizable ; 

(iv) a nonzero measure v on S is homogeneous  o f  type oJ1 if and only if v is 

absolutely continuous with respect to ~ ; 

(v) qr is isometric to the U-direct sum 

(vi) ~ ( S )  does not contain a subspace isomorphic to 11(~o,). 

PROOF. The basic process in the construction is the following. Suppose that T 

is a compact space, that/x is a probability measure on T, and that N = ( K . ) . ~  is 

a sequence of disjoint closed subsets of T satisfying 

K. = supp (p. [K.)  

Denote  by T x the subset 

(n ~oJ) ,  

(T  x {0}) U U (Ko x {2-~ 

of T • R. Then T x is compact and the map p : T x --* T;  (t, x )  ~ t is continuous. 

We denote by/z x the measure on T x obtained by splitting/x in half, that is 
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/z x = �89 ~ (/z I K , ) ~ ) ( 6 ( 0 ) +  a(2-") ) .  

Cer ta in ly  the image/~( /z  x)  of i z x  under  p is tz and, if T = suppp. ,  then also 
T x = supp p~ x. 

T h e  space  S that  we shall cons t ruc t  will be  the inverse limit of  a sys tem 

(&, p~ L_~o_~0~, 

of compac t  met r izable  spaces indexed by the ordinals  a with to =< a < to1. We  

shall also define probabi l i ty  measures  /z~ on the spaces S~ ; these will satisfy 

~ = ~ o ~  (,~ < t~) 

and ~ will be  def ined to be  the inverse limit measu re  on S. As  usual, we shall 

wri te p ,  for  the canonical  m a p  S ~ S,. 

We  start  by defining S~ = D ~ and #~ = ~ ,  and fix an enumera t i on  (N]')r of 

the compac t  ~ - n u l l  subsets  of  S~. Suppose  now that  spaces S~, con t inuous  

sur ject ions p~,  measures /z~ ,  and enumera t i ons  o ( N ~ ) ~ ,  of the c o m p a c t / z  o-null 

sets have  been defined for  all a,  fl with to -< a =< fl < & In the case where  6 is a 

limit ordinal  we just t ake  S~ a n d / z t  to be  inverse limits, p~t to be  the natural ly  

de t e rmined  m a p  and choose  an enumera t i on  ( N ~ ) ~ ,  of the compac t  /.t~-null 

sets. 

I f 8  y + l ,  we no te  that  the subset  E = U ~ . ~ p , , ~ [  e ] o f S ~  is /x , -nul l ,  and 

choose  a sequence  Y{" = Yt ' (T)= (K,~),~,o of  disjoint  compac t  subsets  of S.,\E 
satisfying K ,  ~ = supp (/z~ I K,~), 

We  take  

s~+,=s~,, 
y (  

as in the basic process  descr ibed above.  We  also define a m a p  r~ : $,+1 ~ {0, 1} by 

r , ( s )  = {~ if s E S, x{O}, 
otherwise.  

We  may now turn our  a t ten t ion  to proofs  of  the asser t ions (i) to (vi). 

(i) We  no te  that  for  each z E S~, {z} = N~r for  a sui table a ( z ) <  to1. Hence ,  
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by the const ruct ion,  p.(~),, is inject ive on p 2.~(z) wheneve r  fl > a (z) ,  and so p.(.) 

is inject ive on the subset  p2~(z) of S. Since S.(,) is a compac t  met r izab le  space,  

] S . . ) I  _-< to1 and  so I P21( z) l  --< to,. We  deduce  that  IS I = to, f rom the equal i ty  

s = O p:1(z) .  
zES~ 

(ii) We  can define a m a p  p:  S--~ D ~' by 

(ps) .  = (p~s). (n < to), 

( p s ) ,  = (to _-< < to,).  

Then  p is Baire  measu rab le  and induces an i sometry  of L t ( ~ )  on to  LI(A~,,). 

H e n c e  ~ is h o m o g e n e o u s  of type w,. 

(iii) Let  F be  a compac t  p.-null subset  of S. Then  there  exists a < w, such that  

p ,  IF]  is ~ - n u l l .  H e n c e  p~ [F] = m~ for  some  ~: < wl. If y = max {a, ~:} then p ,  I F 

is injective and F is the re fo re  metr izable .  

(iv) If v is a nonze ro  measu re  on S which is s ingular  with respect  to/.~, there  is 

a compac t  subset  F of S with p. (F)  = 0, v(F)  # O. By (iii), F is metr izable .  Since 

a compac t  met r izable  space cannot  carry a measu re  of type to,, v is not  

h o m o g e n e o u s  of type to,. 

(v) Let  (Va)a~A be  a max imal  family of nonzero  a tomless  measures  on S, 

which are mutual ly  singular,  and singular  with respect  to ~. Then  ~ ( S ) *  is 

i sometr ic  to 

It will be  enough  to p rove  that  ]AJ= to. since L ' ( ~ )  is i sometr ic  to L'(A~,) (or, 

equivalent ly ,  to L i([0, 1]~9), and each v. is of  type  co (so that  L ~(v.) is i sometr ic  

to L ~[0, 1]). I shall show, in fact, that  there  are only to~ measu re s  of  type  to on S. 

If v i's any such measure ,  v is carr ied by some  t-~-null ~,.  subset  F of  S. The re  is 

an ordinal  a - a ( v ) <  to, with the p rope r ty  that  p~ is inject ive on p2'p.[F] = F. 

Consequent ly ,  if v '  is a measu re  on S and/5~v'  =/5~v we have  v '  = v. Tha t  is to 

say, the m a p  v --* (a(v),p~(~(v)) ,  which takes  the set of measu res  of  type to on S 

into 

is injective.  

(vi) By (v) and  L e m m a  2.3, ~ ' (S)*  does  not have  a subspace  i somorphic  to 

l'(2~,). H e n c e  by L e m m a  1.1, ~ ( S )  does  not have  a subspace  i somorphic  to 
l'(to,). 
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3.2 REMARK. The construction given in 3.1 shows clearly the way in which 

Proposition 2.2 (or proposition 2.3 of [3]) fails in the case ~" = toz. We choose 

continuous functions [~ on S which are close approximations in L l(/.t) norm to 

the functions r~. There is no uncountable set of indices for which the family 

(f~)~a is equivalent to the usual basis of /I(A). 

ACKNOWLEDGEMENT 

This paper contains research carried out while the author was visiting the 

Equipe d'analyse, Universit6 Paris VI during March 1977. 

REFERENCES 

1. P. Erd6s and R. Rado, Intersection theorems for systems of sets, J. London Math. Soc. 35 
(1960), 85-90. 

2. J. Hagler and C. Stegall, On Banach spaces whose duals contain complemented subspaces 
isomorphic to ~[0, 1]*, J. Functional Analysis 13 (1973), 233-251. 

3. R. Haydon, On Banach spaces which contain l~(':) and types of measures on compact spaces, 
Israel J. Math. 28 (1977), 313-324. 

4. J. Lindenstrauss and L. Tzafriri, Classical Banach Spaces, Springer-Verlag, 
Berlin-Heidelberg-New York, 1973. 

5. H. P. Rosenthal, On injective Banach spaces and the spaces L | ~ ) [or finite measures i~, Acta 
Math. 123 (1970), 205-248. 

6. H. P. Rosenthal, A characterization o[ Banach spaces containing U, Proc. Nat. Acad. Sci. 
U.S.A. 71 (1974), 2411-2413. 

BRASENOSE COLLEGE 
OXFORD, ENGLAND 


